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In this investigation, the utility of a static light scattering (SLS) technique to characterize aggregate mor-
phology of two-dimensional engineered nanomaterials (2D ENMs) was systematically evaluated. The
aggregation of graphene oxide (GO) and lithiated-molybdenum disulfide (Li-MoS2) were measured and
compared to that of a spherical reference colloid, carboxylate-modified latex (CML) nanoparticles. The
critical coagulation concentration (CCC) for all dispersions was determined via analysis of aggregation
kinetics using time-resolved dynamic light scattering. This technique allowed for the elucidation of the
transition from the reaction-limited aggregation (RLA) regime to diffusion-limited aggregation (DLA).
The findings of this study support the aggregation trends predicted by Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory and recent computer simulations of aggregation kinetics. For all nanomaterials,
as ionic strength increased towards the respective the CCC, fractal dimension decreased; any increase in
ionic strength beyond the CCC did not yield significant change in fractal dimension. Across comparable
primary particle sizes and using both carbonaceous (GO) and inorganic (Li-MoS2) 2D ENMs, this study
further supports the use of SLS for the measurement of fractal dimension for 2Dmaterials. To further sup-
port this claim, the aggregate morphology of GO in both RLA and DLA regimes was measured via cryo-
genic transmission electron microscopy.
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1. Introduction

The rapid increase in the use of planar, or 2-Dimensional, engi-
neered nanomaterials (2D ENMs) for a variety of applications has
given rise to the question of whether techniques traditionally used
for characterizing environmental fate and transport of colloids,
such as light scattering methods, can be applied to 2D ENMs [1–
4]. While most light scattering methods assume spherical geome-
try in their design and interpretation of measurements, this study
intends to verify that light scattering techniques, specifically static
light scattering (SLS), can be effectively used for colloidal charac-
terization of 2D nanomaterials [5]. The current alternative to tradi-
tional methods such as SLS and dynamic light scattering (DLS) is
the use of direct visualization techniques, such as transmission
electron microscopy (TEM) and cryogenic-TEM. The limitations of
these visualization techniques are well documented (sample
matrix constraints, limited access to equipment, statistical power,
and cost), such that the use of more common light scattering meth-
ods would facilitate increased productivity in the environmental
nanotechnology community [6].

Two prominent 2D ENMs (graphene oxide (GO) and lithiated-
molybdenum disulfide (Li-MoS2)), as well as a commonly studied
spherical model ENM, carboxylate-modified latex (CML) were cho-
sen for this investigation to evaluate the feasibility of using SLS to
elucidate aggregate morphology of a colloidal suspension. GO pro-
duction and usage has increased in a wide variety of consumer and
industrial products including electronics, sports accessories, and
sensors [7,8]. Li-MoS2 has likewise grown in popularity for its ben-
eficial characteristics for the development of lithium ion batteries,
which include having a high reversible capacity and excellent rate
capability [3,9]. While the material, as well as environmental fate
and transport characteristics of these materials have been previ-
ously assessed, this study is the first of our knowledge to system-
atically compare the results of two traditional colloidal
characterization methods and one imaging technique for 2D ENMs
[10–12]. The results of this work provide additional insight into the
use of a common light scattering method for studying the environ-
mental behavior of increasingly common planar materials.
2. Materials and methods

2.1. Engineered nanomaterials

The carboxylate-modified latex (CML) nanoparticles used in this
study (4% w/v, 0.4 lm) were purchased from Life Technologies
(Grand Island, NY). Particle suspensions were made by diluting a
stock solution of 4.1 g/mL with deionized water to a concentration
of 10 mg/L. This sample concentration was used for all CML particle
characterization assays.

The lithiated molybdenum disulfide (Li-MoS2) and graphene
oxide (GO) synthesis methods have been reported previously
[13,14]. Briefly, lithiated MoS2 was prepared by combining
300 mg of bulk MoS2 powder (American Elements) and 3 mL of
butyllithium in a vial, followed by vigorous stirring for 48 h in an
argon environment. The slurry was filtered and rinsed extensively
with hexane. The MoS2 was then dispersed in 500 mL of deionized
water, followed by bath sonication for 30 min. The unexfoliated
material was separated via centrifugation. The top 80% of the
supernatant was decanted and dialyzed against deionized water
for 7 days to eliminate any residual lithium or hexane. GO was pre-
pared using a modified Hummers’ method starting from graphite
flakes (3061 grade material from Asbury Graphite Mills, Asbury,
NJ). Following oxidation, the GO was rinsed extensively and con-
centrated via filtration and centrifugation. The GO was then dis-
persed in deionized water by horn sonication using a Fisher
Scientific Model 500 Sonic Dismembrator (Pittsburgh, PA) with a
1.27 cm tip for one hour at 55 W. Any unexfoliated material was
removed by a centrifugation step. The top 80% of the supernatant
was decanted and reserved for these studies.

2.2. General characterization of nanomaterials

2.2.1. Electrokinetic properties and aggregation rate of nanomaterials
A ZetaPALS analyzer (Brookhaven Instruments, Holtville, NY)

was used to measure the electrophoretic mobility (EPM) of the
nanomaterials. EPM was converted to zeta potential using the
Smoluchowski equation [15]. The effective diameter was measured
with dynamic light scattering (Brookhaven NanoBrook OMNI, Holt-
ville, NY) in which measurements were taken at a scattering angle
of 90 � and a wavelength of 661 nm. It is well understood that even
for 3D ENMs there is often a discrepancy in the size values
obtained via light scattering versus electron microscopy [1]. For
the purposes of this investigation, the ability of the light scattering
technique is sufficient to resolve trends in size changes [1]. The
influence of ionic strength (IS) on the CML, GO, and Li-MoS2 nano-
materials was determined by measuring the EPM and effective
hydrodynamic diameter across an environmentally relevant IS
range of 1.0–100 mM KCl. All electrokinetic and size measure-
ments were taken at room temperature (23 ± 1 �C) and conducted
in triplicate.

2.2.2. Aggregate morphology of nanomaterials
The fractal dimensions of the CML, GO, and Li-MoS2 nanomate-

rials as a function of IS (1.0–100 mM KCl) were measured using a
multi-angle static light scattering instrument (BI-200SM, Brookha-
ven Instruments, Holtsville, NY) at a wavelength of 633 nm across
a scattering angle of 12–45� using 10 logarithmically-spaced incre-
ments of the scattering vector. Triplicate measurements were
taken using borosilicate glass cuvettes. The fractal dimension val-
ues were obtained from the scattering intensities using the
Rayleigh-Gans-Debye (RGD) theory and previously described
methods

I qð Þ / q�FD ð1Þ

q ¼ 4p
k

sin
h
2

ð2Þ

where I (q) is the scattering intensity as a function of the scattering
wave vector, q is the scattering wave vector, FD is the fractal dimen-
sion, k is the wavelength of incident light, and H is the scattering
angle [16,17]. The fractal dimensions of the nanomaterial aggre-
gates were obtained from the slope of the best fit linear line, where
the inverse of intensity of the light scattered (log (I)) was plotted
against the scattering vector (log (q)). Eq. (1) is a simplification of
the more general

I qð Þ / F qð ÞSðqÞ ð3Þ
where F(q) is the form factor and S(q) is the structure factor [18].
The simplified Eq. (1) can be used when the product of q and r0 is
between 10�1 and 100, where r0 is the primary particle radius
[19]. The range of angles used to collect intensity values (12-45�)
represents a small range of q in order to satisfy this relationship
and accommodate the large primary particle radii of the 2D ENMs
in this study. A non-integer fractal dimension value from 1 to 3 sug-
gests that the aggregating particles may be fractal, with the lower
fractal dimension values correlating with a lower packing density
[20]. A lower fractal dimension value typically is a result of fast
aggregation occurring amongst similar particles, with the upper
spectrum correlating with a maximum density of the aggregate
structure as a result from slower aggregation processes [19,21].
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2.2.3. Cryogenic transmission electron microscope images of
nanomaterials

Cryogenic Transmission Electron Microscopy (cryo-TEM)
images were collected of the ENMs on ‘‘C-flat” holey carbon films
with a mesh size of 200 (Electron Microscopy Services, Hatfield,
PA). Before cryo-TEM sample preparation, the EM grids were trea-
ted by UV/ozone for two minutes to make the grid surface more
hydrophilic. For cryo-TEM sample preparation, Vitrobot (FEI, Hills-
boro, OR) was used according to manufacturer’s standard proce-
dures. Briefly, the process parameters in this case were set as:
blot time, 4.0 s; wait time, 0 s; and drain time, 0.5 s. To obtain
the cryo-TEM images, JEOL 2010 EX HREM (JEOL, Peabody, MA)
was operated with a 200 keV accelerating voltage.
3. Results and discussion

3.1. Effects of ionic strength on colloidal stability of engineered
nanomaterials

A spherical nanomaterial was chosen to serve as a reference by
which to compare and contrast the 2D engineered nanomaterials
used in this study. Previous studies have examined the stability
of similarly synthesized CML nanoparticles as a function of pH
and ionic strength [22]. These stability characteristics, specifically
sensitivity of zeta potential and aggregation rate to ionic strength,
were verified in this study and used to inform the analysis of the
aggregate morphology of the reference CML suspensions.

Consistent with previous findings, Fig. 1 demonstrates that the
CML NPs exhibited an increase in zeta potential over a 5-log
increase in ionic strength (KCl) at an unadjusted pH of 5.4 ± 0.2,
ranging from �68 mV at 1 mM KCl to �18 mV at 100 mM KCl
[22]. Time-resolved dynamic light scattering (TR-DLS) was used
to calculate the aggregation rate of the CML NPs. The rate was cal-
culated from the slope of the best fit linear line when plotting
effective diameter as a function of time, as done previously by
Chen and Elimelech, as well as Stankus et al. and Nason et al.
[23–25]. Significant aggregation over a one-hour measurement
period occurred at an IS of 64.9 mM KCl and above, reaching a max-
imum aggregation rate beyond 100 mM KCl (Fig. 2). All aggregation
rates were then divided by the maximum rate to determine the
overall attachment efficiency, alpha (a). These calculated alpha
values were then plotted against their respective ionic strengths,
yielding a curve that increases steadily before reaching a plateau.
The ionic strength at which the increasing portion of the curve
intersects the horizontal plateau represents the critical coagulation
concentration (CCC) and denotes a transition from the reaction-
limited aggregation (RLA) to the diffusion-limited aggregation
Fig. 1. Zeta potential evaluated as a function of ionic strength for CML (a), GO (b), and L
unadjusted pH ~ 5.4 ± 0.2. Error bars indicate one standard deviation of triplicate meas
(DLA) regime. For the CML NPs, the CCC was found to be
100 mM KCl, as indicated in Fig. 3.

Identical techniques were used to evaluate the stability of the
2D GO and Li-MoS2 ENMs. While not as sensitive to changes in
ionic strength as the CML NPs, the zeta potential of both GO and
Li-MoS2 approached neutrality with greater ionic strength due to
a reduction in Debye length. At 1 mM KCl, the zeta potentials of
GO and Li-MoS2 were �20 mV and �25 mV, respectively, increas-
ing to �10 mV and �5 mV at 100 mM KCl (Fig. 1). As a result, the
aggregation rates of the planar ENMs increased from zero to a max-
imum across the range of ionic strengths tested, as determined by
TR-DLS (Fig. 2). The CCC values were determined to be 31.6 mM
KCl and 50 mM KCl for GO and Li-MoS2, respectively [26].
3.2. Effects of ionic strength on aggregate morphology of engineered
nanomaterials

The aggregation morphology of the colloidal dispersion, as
quantitatively described with fractal dimension values acquired
from SLS, provides additional insight into colloidal stability beyond
zeta potential measurements and overall aggregation rates. Plots
displaying fractal dimension as a function of ionic strength, such
as those in Fig. 4, are used to qualitatively verify the quantification
of the CCC made by analysis of the plots in Fig. 3, thus indicating
the RLA-DLA transition. The plots in Fig. 4 are limited to this qual-
itative interpretation by the large experimental error, which can be
attributed to the heterogeneity of the effective hydrodynamic
diameter of the ENM dispersions used in this study, coupled with
the relatively small range of the scattering wave vector discussed
previously. For the CML NP dispersion in the RLA regime, (ionic
strength < 100 mM KCl), the fractal dimension values were
between 1.375 and 1.5, with an average of 1.45 (Fig. 4). In the
DLA regime (ionic strength � 100 mM KCl), the fractal dimension
values were significantly lower, with an average of 1.26. This result
is in-line with previous studies using this technique for similar par-
ticle suspensions [26,27].

For GO, in the RLA regime (ionic strength < 31.6 mM KCl), the
fractal dimension values measured by SLS were between 1.95
and 2.0, with an average of 1.97 (Fig. 4). In the DLA regime (ionic
strength � 31.6 mM KCl), the fractal dimension values were lower,
with an average of 1.73.

For Li-MoS2, in the RLA regime, (ionic strength < 50 mM KCl),
the fractal dimension value average was 2.2 (Fig. 4). In the DLA
regime (ionic strength � 50 mM KCl), the fractal dimension values
were significantly lower, with an average of 1.73.

To supplement and further verify the fractal dimension mea-
surements from SLS, the fractal dimension of GO in both RLA and
DLA regimes was evaluated via analysis of cryo-TEM images
i-MoS2 (c) ENMs. Concentration of nanomaterials was maintained at 10 mg/L at an
urements.



Fig. 2. CML (a), GO (b), and Li-MoS2 (c) ENMs evaluated as a function of ionic strength and time for effective diameter and aggregation rate. Particle concentration was
maintained at 10 mg/L at an unadjusted pH ~ 5.4 ± 0.2.

Fig. 3. Attachment efficiency evaluated as a function of ionic strength for CML (a), GO (b), and Li-MoS2 (c) ENMs.

Fig. 4. CML (a), GO (b), and Li-MoS2 (c) ENMs evaluated as a function of ionic strength for fractal dimension. Particle concentration was maintained at 10 mg/L at an
unadjusted pH ~ 5.4 ± 0.2. Error bars indicate one standard deviation of triplicate measurements.

Fig. 5. Micrographs of GO ENMs suspended in 20 mM (left) and 200 mM KCl (right) collected via cryogenic transmission electron microscopy.
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(Fig. 5), utilizing ImageJ image processing software. In a 20 mM KCl
suspension (below the CCC of 31.6 mM), fractal dimension was
1.96. In a 200 mM KCl suspension (above the CCC), fractal dimen-
sion was 1.67. The difference in fractal dimension measured via
cryo-TEM between the suspensions corroborates the ability of
SLS to distinguish changes in fractal dimension when transitioning
from RLA to DLA regimes.

The static light scattering technique qualitatively verified the
transition from RLA to DLA, signifying the shift from slow aggrega-
tion to fast aggregation, for both spherical and planar ENMs. The
fractal dimension values of GO measured using cryo-TEM are in
good agreement with those fractal dimension values obtained with
SLS. This further supports the deployment of static light scattering
for the qualitative characterization of aggregate morphology of
planar engineered nanomaterials.
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